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The energy balance condition on the interface for phase change with 
thermal wave effect 
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THE INTERFACIAL ENERGY BALANCE CONDITION 
OF PHASE CHANGE 

We consider a control volume V with stationary surface 
,4 ( = ,4~ + ,~2) as shown in Fig. 1. A~(t) is the phase-change 
moving interface between phase 1 and phase 2 that separates 
V into V~(t) and V2(t). nk is the unit normal outward from 
phase k, k = 1 or 2, respectively, n~ is the unit normal to the 
interface of  the phase change, and n~ = nt = - n :  is chosen 
at the interface, Vz is the phase-change velocity. When v~ is 
opposite from n~, a condensing process (gas-liquid) or a 
freezing process (fluid-solid) happens at the interface. 

On the basis of  energy conservation law in control volumes 
V = V~(t)+ V2(t), the following equation is obtained: 

v~It) 

1 z 

where c,,k T~ and ½ v~ are the internal energy and kinetic energy 
of  phase k, respectively ; Q~. is the latent heat of  the phase 
change ; while qk refers to the heat flux across Ak from out- 
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Fig. 1. The control volume V = V~ + V2 in a two-phase 
system. 

side; ~v~(,)F~k'vk d V is the applied work by volume force; 
~Sa~ Ivy" P~" Ilk] dA is the applied work by stress at the surface 
Ak ; Pk (Pk = --pkl+ak) is the stress tensor of  phase k; v~, Pk, 
Tk, Pk, ak are the velocity, density, temperature, pressure, and 
the viscous stress tensor of  phase k, and I represents the unit 
tensor, respectively. The applied work by surface tension at 
the interface is neglected, and the applied heat source in the 
control volume is not accounted for. 

Employing the Leibniz and Gauss formula, let the inte- 
grated functions in the surface integral parts of the above 
integral be equal to zero, and the energy balance condition 
at the interface is obtained as follows : 
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where mk= p~(vk- v~)" nk is the relative mass flux of  k phase 
to the interface. For fluid-solid system, equation (1) can be 
farther simplified when the stress and strain in the solid phase 
are neglected. 

THE INTERFACIAL ENERGY BALANCE 
CONDITION OF THE PHASE CHANGE WITH 

THERMAL WAVE EFFECT 

On the basis of the thermal wave theory, when a tem- 
perature gradient is suddenly introduced in an engineering 
material, the heat flux will be established after a finite relax- 
ation time (z). Therefore, the relation between the tem- 
perature gradient (VT) and heat flux (q) can be described as: 

q~ + r~ ~ t  k + O(T~) = - 2kVTk (2) 

Noting that enthalpy (sensible heat) is 
hk = cpkTk = C,:kTk+pjpk, and employing interfacial mass 
balance condition [8] : 

mk = 0, then ~ ehkc,.kT k 
k 1,2 k = 1,2 

= ~ mk(hk-- h,.)-- Y+ pk(v~ -- v,)" nk 
k - l , 2  k= l , 2  

Where the parameters with subscript m are the parameters 
at phase-change point, cpk, c~k are specific heat at constant 
pressure and at constant volume, respectively. Substituting 
it into equation (1), the following equation is obtained: 

1 2 k~2[rhk(hk--h,,)+~&kvk+pkv, 'nk--nk'~k'vk+nk'qkl 

+p2QLvz'nz = 0 (3) 
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/i( = J~ + ~i2) surface of  control volume V 
At phase change interface 
cp specific heat at constant pressure 
c,, specific heat at constant volume 
C~ second sonic velocity 
e~" strain tensor of  phase k 
F~k volume force of  phase k 
h enthalpy 
I unit tensor 
L0 non-dimensional length scale 
n unit normal vector 
Nv = v~/ho 
N t  = z/(Lo/vo) 
p pressure 
Pr Prandtl number 
q heat flux 
Q~ latent heat of  phase change 
Re Reynolds number 
St  Stefan number 
t time coordinate 
T temperature 
v velocity 

NOMENCLATURE 

/3 0 

lee 
X~ 

non-dimensional velocity scale 
Vernotte number 
space coordinates. 

Greek symbols 
thermal diffusivity 

2 heat conductivity 
p viscosity 
p density 
o viscous stress tensor 
t relaxation time of thermal wave. 

Subscripts 
1 parameter of phase interface 
k parameter of  phase k, k = 1, 2 
m parameter of phase-change point 
0 non-dimensional scale. 

Superscripts 
' a l&  
* dimensionless quantity. 

In the following deduction, the heat radiation at the inter- 
face is neglected. Noticing that 

8 ~ 8 8xj 8 8 
at - at + O-xy at - 8t + 8"-~y v° 

equation (3) is differentiated with time t; then substituting 
equation (2) into it, the terms of 8 ~ / 8 t  are eliminated; 
assuming z = z~ = z2, substituting equation (3) into the equa- 
tion after eliminating the terms of  8qk/Ot, the terms of  qk" nk 
are further eliminated; after much algebraic operation, we 
finally obtain : 

+p2QN~'n,=-~n'o'nl (4) 
n'o = f {pk ,  P'k, pk, P'k, at, o'~, vk, v,, V'k, V'I, hk, hm, h'~, Qr) 

= ~ ( -  1) k+lLO'k(vk-v~)(h~-h,.)+pk(v'k-v'~)(hk-hm) 
k = l , 2  

+ p~(vk -- v,)h~,] + (pq --p[)v,+ (p, -p2)v;  

-- ~,, (--1)~+~[a~v~+a~v~]+ ~ ( - 1 )  ~+' 
k =  1,2 k =  1,2 

I- V2 V2 -1 
, k , , k 

X [pk(Vk  --  Vl) ~ + pk(Vk - -  V'l) ~ + pk(Vk - -  V I)Vk/3kJ 

-- QL(pzVz + p 2v~) 

where G" = (OG/dt). For fluid-solid system, when P2 = 0, 
v2 = 0, P[ = 0, v[ = 0, a simplified form of equation (4) can 
be obtained. 

The length, velocity, time, density, pressure and enthalpy 
are scaled with respect to Lo, vo, Lo/vo, Po, pov~ and 
h0( = Go To), respectively. Then equation (4) can be trans- 
formed into the following dimensionless form : 

Fmk (hk -- h~) + 
Nv N v  • , . * . . . 2  * * .  - -  . ~ *  
--~mkv~ + NVpk Vt nk-- Reknk ~ "V~ 

k=L2 L 

1 V . T . . n k l + S t p ~ v . . n , = _ n , o . n ,  (5) 
Prk Rek 

n~*=f{p*,p 'k* ,p* ,p 'k* ,E~.~ ,='*  * * , .  , ,  * * --k , Vk,  VI , Vk , V! , h k ,  hm, h'k*, Nv,  

N~, St,  Rek } 

= Y~ N t ( -  ~ + ~  ' *  * * * * 1) [Pk (Vk --  Vt )(hl  --  hm) 
k = 1,2 

+ Pk (Vk -- VI )(hk -- hm) + Pk (Vk -- V/)hk ] 

+ NvNt[(p~* --p~*)v* + (p* --p~)v~*] 

N v N z  k+ 

F~,,,v. v,~ vU 

. . . . .  v~'2 +V~(v~'-vDvkv~*] +pk (vk -v~ )~'- 

- Nz St (p~*v* + p*v~*) 

where non-dimensional parameters: Nv = (v~/ho), Nz  = 
(v0z/L0), Prandtl number of  phase k Prk = (Cpo#k/2k), Stefan 
number St  = (QL/ho), Reynolds number of phase k 
Rek = povoLo/ lak, E* = [~(V*'V~)+2ek], and ekij* _--"~l [( aVki/, 
aXj) + (aV~j/OX~)] is the strain tensor of  phase k. All the quan- 
tities with superscript * are dimensionless. 

DISCUSSION AND CONCLUSIONS 

(1) As shown in equation (4), the enthalpy difference 
between the two phases, the work of  pressure difference 
imposed on the phase change medium Zk.t .2pkvl"nk,  the 
work of  viscous stress imposed on fluid Zk= ~,2 nk" ak" Vk, the 
relative kinetic energy of  the fluid flow to the moving inter- 
face of  the phase change Zk= L2 rnk ½ v~ must be accounted for 
in the energy balance condition at the interface of the phase 
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change, except for familiar latent heat of  the phase change 
and the heat conduction. When the effect of  the thermal wave 
is considered, ~ # 0, the acceleration of  the phase change 
(v)) and the acceleration of  the fluid flow (v~,), the com- 
pressibility of  fluid (p~), the variation of  pressure, viscous 
stress and enthalpy with time (p~, a~,, h~,) must be accounted 
for further. For actual engineering and scientific problems, 
equation (4) can be further simplified. 

(2) When r # 0, pj - P2, vk = 0, p~, = 0, equation (4) is 
simplified as : 

[pk(cek T~ -- cp,, T,,)( - v,)" nk - 2kV Tk" nk] 
k= 1,2 

+p:Qtv~'nl = rn~'nt  (6) 

n'o = f{pk, vl, v't, hk, h,., h'k, Qz} 

= ~ ( -  l)k+'[pkv~hk--h,.)+pkvth'~]+QLp2v'l 
k -  1,2 

The acceleration of  the phase change, the enthalpy differ- 
ence between the two phases and its variation with time must 
be accounted for in the energy balance condition at the phase 
change interface, although the pressure difference between 
the two phases, the fluid velocity and fluid compressibility at 
the interface are not accounted for. When the control volume 
is one-dimensional, equation (6) is further simplified as a 
dimensional form of  equation (10) in ref. [7]. 

(3) When T # 0, Pl = P~, vk = 0, p~, = 0, hk = h,,, hi = 0, 
and the control volume is one-dimensional, equation (4) is 
simplified as equation (2.7) in ref. [3] and equation (11) in 
ref. [4]. Equation (4) can be simplified as equation (14) in ref. 
[2] and equation (13) in ref. [1] if hk = 0 instead of h2 = 0. 

(4) When ~ = 0, p~ = P2, hk = h,,, vk = 0, equation (4) 
reduces to 

2kVTk'nt = QLpzv1"ni (7) 
k = 1,2 

This is the classical Fourier relation of  phase change. In this 
relation, the effect of  the thermal wave, the fluid velocity, the 
viscous stress of  fluid, the pressure difference and enthalpy 
difference between two phases at the interface of  the phase 
change are not accounted for. 

(5) The non-dimensional parameter Nv = (vZo/ho) is the 
ratio between the kinetic energy of  the physical process and 
enthalpy; ArT = [T/(Lo/vo)] is the ratio between the thermal 
wave relaxation time and the characteristic time of  the physi- 
cal process. When taking v0 as the characteristic velocity of  
flow, NT is the ratio between the relaxation time and the 
characteristic time of  flow. Nv is the ratio between the kinetic 
energy of  flow and enthalpy. When taking v0 as the thermal 
diffusion velocity, i.e. v0 = (ct/Lo), and ~ = thermal diffu- 

sivity, then Nz is the ratio between the relaxation time and 
the thermal diffusivity time. Nv is the ratio between the 
kinetic energy of  thermal diffusion and enthalpy. When v0 is 

taken as second sonic velocity Iv0 = ~/(c~/T) = C,], Nv will be 
the ratio between the kinetic energy of  the thermal wave 
propagation and enthalpy. Nz = (,¢/~/Lo) is only just the 
Vernotte number, Ve, which is the ratio between the relax- 
ation time and characteristic time of  the thermal wave propa- 
gationT/(Lo/CO, and is also the square root of  the ratio 
between the relaxation time and the thermal diffusivity time 

In conclusion, therefore the correct correlation of the 
experimental data in the phase-change problems would con- 
tain the following dimensionless parameters : 
t r ek ,  Prk, Nv, N~, St). 
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